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Abstract

Physically based mathematical models and statistically based empirical equations each may 
provide useful means of forecasting runout of rock and debris avalanches.  This paper 
compares the foundations, strengths, and limitations of a physically based model and a 
statistically based forecasting method, both of which were developed to predict runout 
across three-dimensional topography.  The chief advantage of the physically based model 
results from its ties to physical conservation laws and well-tested axioms of soil and rock 
mechanics, such as the Coulomb friction rule and effective-stress principle. The output of 
this model provides detailed information about the dynamics of avalanche runout, at the 
expense of high demands for accurate input data, numerical computation, and experimental 
testing.  In comparison, the statistical method requires relatively modest computation and 
no input data except identification of prospective avalanche source areas and a range of 
postulated avalanche volumes.  Like the physically based model, the statistical method 
yields maps of predicted runout, but it provides no information on runout dynamics.  
Although the two methods differ significantly in their structure and objectives, insights 
gained from one method can aid refinement of the other. 

1.  Introduction

Forecasts of hazards from rock and debris avalanches must address two kinds of questions: 
(1) where and when will slope failure occur, and (2) how far and how fast will down-valley 
runout occur?  Although runout of rock avalanches  is commonly regarded as a enigmatic 
phenomenon, forecasting runout may be a more tractable problem than forecasting the 
location and timing of rock slope failure that occurs in the absence of observed precursory 
deformation.  Whereas slope failure is governed by a balance of quasistatic forces that can 
be exceedingly delicate (e.g., a factor of safety ~ 1.001 implies that a slope is stable but 
precariously poised), rock avalanche motion is governed by an imbalance of dynamic forces 
that can be immense.  The speeds and masses of moving rock avalanches dictate that bulk 
inertial effects commonly dominate motion, and the laws of classical mechanics dictate that 
the effects of bulk inertia are relatively predictable. Thus, there is cause for optimism about 
forecasting avalanche runouts. 
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runout of rock avalanches depends strongly on avalanche volume (or mass) and runout-path 
topography [15]. The topography of prospective avalanche paths is generally well known, 
whereas the volumes of  prospective avalanches are typically poorly constrained because 
the size of slope failures commonly depends on subtle geological structures and 
heterogeneities, and on transient forcing due to rainfall or earthquakes.  Therefore, methods 
for forecasting runout should take advantage of reliable knowledge of topography and take 
account of limited knowledge of avalanche volume. These considerations argue strongly for 
use of forecasting methods that represent three-dimensional topographic effects rigorously 
and treat avalanche volumes as independent variables that have inherent uncertainty.

This paper discusses two methods of forecasting rock avalanche runouts across three-
dimensional terrain.  One method aims mainly at enhancing scientific understanding by 
devising a physically and mathematically rigorous theory that yields testable predictions of 
runout dynamics.  The other method aims mainly at expediting practical hazard assessment 
by using statistical analysis of runout trends to forecast the probable extent of future 
runouts.  The physically based model yields greater returns of information, at a cost of 
greater demands for input data and computation.  The statistically based approach has a 
more limited scope, but it requires relatively modest computation and no input data other 
than path topography and a postulated distribution of avalanche volumes.

The choice of a particular method of runout forecasting depends principally on the 
objectives of the forecast.  Some practical objectives (e.g., hazard-zone assessment) may be 
met most expediently with statistically based methods, whereas scientific objectives (e.g.,
improved understanding) can be met most rigorously with physically based models.  
Diverse objectives and methodologies can be synergistic, however.  Improved physical 
understanding can lead to improved hazard forecasts, and information gained in hazard 
assessments can lead to improved physical understanding. 

2.  Physically Based Modeling

This section describes formulation and testing of a physically based model that uses 
universal principles (i.e., mass and momentum conservation) and well-tested formulas (i.e.,
the Coulomb friction rule and Terzaghi effective-stress principle) to compute avalanche 
motion from initiation to deposition.  The model, developed by Iverson and Denlinger [3, 
11],  predicts the behavior of granular avalanches under a wide variety of soil and rock 
states, which may range dry to water-saturated and from rigid to fully fluidized.  Conditions 
in which the model applies include static limiting equilibrium (which exists at the onset of 
slope failure), dynamic states dominated by bulk inertia, and subsequent static states that 
result from deposition.  Furthermore, the model accounts for the effects of evolving pore-
fluid pressure and three-dimensional path topography. 

2.1.  CONCEPTUAL FRAMEWORK 

The guiding philosophy of the model of Iverson and Denlinger [3, 11] is to represent the 
well-constrained aspects of avalanche dynamics as thoroughly as practicably possible, and 
to minimize assumptions about the more puzzling aspects of avalanche dynamics.   For 
example, aspects of avalanche dynamics dictated by momentum conservation are 

As might be expected for a phenomenon driven by gravity and dominated by inertia, 

198



completely constrained by physical law.  Therefore, bulk inertia terms (which express 
momentum transport without energy dissipation) in the avalanche dynamics model involve 
no assumptions, and involve only mathematical approximations that are rigorously 
justifiable in view of the pertinent physics.

The more puzzling aspects of avalanche dynamics result from dissipative (i.e., resisting) 
forces, and the model assumes that these forces obey well-tested formulas of classical soil 
and rock mechanics (i.e., the rules for Coulomb friction and effective stress mediated by 
pore-fluid pressure).  This parsimonious approach to physically based modeling provides 
the surest route to rigorous understanding of avalanche runout, because it employs no 
coefficients that are adjusted to fit model predictions to data, and it thereby facilitates 
conclusive hypothesis tests. Use of adjustable resisting forces in avalanche dynamics 
models is unwarranted unless a model that rigorously conserves momentum and employs 
parsimonious assumptions about resisting forces is demonstrably inadequate [10]. 

2.2.  MATHEMATICAL FORMULATION 

As noted above, the central postulate in the avalanche dynamics model of Iverson and 
Denlinger [3, 11] is the well-known Coulomb-Terzaghi equation for resistance to basal 
sliding:

Here bed  is basal normal stress, pbed is basal pore-fluid pressure, and bed

Coulomb friction angle, which is constrained by experiments to range from about 30 to 40 
degrees for most fragmented rocks and granular soils.  Application of the Coulomb-
Terzaghi equation to avalanche dynamics involves a number of subtleties, however. First,
a resistance equation consistent with Coulomb-Terzaghi behavior must be employed to 
describe not only basal sliding but also shear and normal stresses within deforming 
avalanches. Second, basal pore-fluid pressure in an avalanche mass can change as a 
function of position and time, and evolving pore-fluid pressure must therefore be evaluated 
simultaneously with evolving avalanche motion. Third, mass and momentum must be 
conserved in four dimensions (space plus time) within the moving avalanche.

A detailed mathematical derivation of equations with the properties described above is 
beyond the scope of this summary but has been provided by Iverson and Denlinger [11]. To 
simplify the four-dimensional equations, they are integrated through the avalanche 
thickness to eliminate explicit dependence on the velocity component normal to the bed.  
This simplification is typically justifiable because tabular avalanche geometries dictate that 
bed-normal velocities are much smaller than bed-parallel velocities in most instances [18, 
19].  The resulting depth-integrated equations governing evolution of mass, momentum and 
pore-pressure distributions are referenced to a coordinate system fitted to local bed 
topography (Figure 1) and are summarized as follows: 

bedbedbedbed )p-(= tan  ϕ

ϕ  is the basal 

(1)
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Although this set of equations is mathematically complex, the physical concepts entailed 
are simple and few:  mass and momentum conservation, Coulomb friction, and effective 
stress mediated by evolving pore-fluid pressure.  The independent variables in the equations 
are the orthogonal planimetric coordinates x and y (which are rotated to fit local 
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Figure 1.  Schematic illustrating variables in the avalanche model summarized by equations (2 a-k). Vertical 
exaggeration is about 10 to 100 .   Labels of the front, body, and tail characterize an avalanche or debris flow that 
is partially liquefied by high pore-water pressure.

topography) and time t.  The dependent variables are the depth-integrated velocity 
components t)y,(x,vx and t)y,(x,vy , the avalanche thickness t)y,h(x, , and the basal 

pore-pressure ratio, t)y,(x, .    For granular avalanches without pore-fluid effects (i.e.,
0=0,= ), the only relevant parameters are the basal and internal friction angles of the 

granular debris, bed  and int .  If pore-fluid effects are present, additional relevant 
parameters are the bulk density of the avalanche debris, , bulk density of the pore fluid, 

f , volume fraction of the pore fluid (i.e., porosity), f , viscosity of the pore fluid, µ, 
and the pore-pressure diffusivity (i.e., consolidation coefficient), D.  The x and y
components of gravitational acceleration, g, local slope angle, , and local bed curvature, 

x/=r/1 xx , are determined by the local terrain (Figure 1).  An important feature of 
all of these quantities is that they are independently measurable on maps or in standard 
laboratory tests;  none of the quantities is an adjustable tuning coefficient. 

The equations defining ,k act/pass , and c are mathematically derived and have 
straightforward physical interpretations [3, 9, 11]: kact/pass is a Rankine earth-pressure 
coefficient that applies in cases with simultaneous internal deformation and slip along the 
bed;  is the ratio of basal pore pressure to basal lithostatic stress;  and c is a gravity-wave 
speed that governs the maximum rate at which disturbances propagate longitudinally 
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through the deforming avalanche material.  In general this gravity-wave speed is influenced 
by intergranular friction and includes as a special case the analogous speed used in shallow-
water wave theory, )hg(=c 1/2

z  .  Here, )hg(=c 1/2
z  applies only under conditions of 

full avalanche fluidization ( 1= ).
Initial conditions used to begin model calculations specify zero avalanche velocity 

( 0=v=v yx ), an initial pore-pressure distribution, y)(x,0 , and an initial thickness 

distribution y)(x,h0 .  The thickness distribution defines the avalanche volume, which is 
assumed to remain constant throughout motion and deposition.  Terms that allow for 
variable avalanche volume due to progressive erosion or sedimentation can easily be added 
to the mass- and momentum-conservation equations.  To date, however, no rigorous 
experiments or calculations have been performed to constrain the magnitude of such terms, 
and they consequently are omitted. To assess behavior of prospective avalanches with 
differing initial volumes or distributions of mass as specified by y)(x,h0 , multiple model 
runs are required. 

The system of equations (2a-k) listed above includes some well-known equations as 
special cases:  the standard shallow-water equations [22], the dry granular avalanche 
equations of Savage and Hutter [18, 19], the multidimensional Savage-Hutter equations of 
Gray et al. [4], the simplified Savage-Hutter equations of Hungr [7], and the sliding-
consolidation equations of Hutchinson [8].  Also, despite their generality, equations (2a-k) 
contain at their core the simple one-dimensional equation of motion for a rigid Coulomb 
slide block,

The mathematical complexity that distinguishes (2a-k) from (3) is necessary to account for 
the distributions of velocity, thickness and pore pressure in three-dimensional rock and 
debris avalanches. 

2.3.  MODEL TESTING 

One of the biggest obstacles to developing a robust, physically based model of rock and 
debris avalanches is the difficulty of conclusive testing. Such models can seldom, if ever, 
be tested against field data, because field data generally leave many factors (such as initial 
and boundary conditions) poorly constrained.  Therefore,  models are generally fitted to
field data rather than tested against field data, and model veracity remains equivocal.

As an alternative to fitting field data, models can be tested against data from controlled 
experiments in which all parameter values, boundary conditions, and initial conditions are 
independently constrained.  However, a potential difficulty with such experiments is 
scaling, because controlled experiments generally cannot be conducted at the scale of large 
geological events.  This difficulty can be addressed in several ways.  For example, 
normalization of the equations of motion (2a-k)  identifies relevant scaling parameters, 
which imply that purely frictional avalanches without pore-fluid effects will behave in a 
manner that is independent of scale [11].  On the other hand, the same scaling parameters 
indicate that avalanches with pore-fluid effects can be expected to behave in a scale-
dependent manner, whereby increasing mobility occurs with increasing scale if all other 

)   -( g = /dt vd bedx tancossin (3)ϕθ θ
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factors are constant.  These scaling considerations motivated Denlinger and Iverson [3] to 
test model predictions against data from two kinds of experiments: (1) bench-top 
experiments with miniature avalanches of about 0.001 m3 of dry, well-sorted sand in which 
pore-fluid effects were negligible, and (2) large-scale, outdoor experiments with avalanches 
of about 10 m3 of poorly sorted, water-saturated sand and gravel with significant pore-fluid 
effects.  Both types of experiment highlighted the importance of multidimensional 
momentum transport in avalanches, and both demonstrated good agreement between data 
and model predictions. However, owing to the complexity of the numerical method used to 
compute solutions to the model equations, additional testing under more realistic scenarios 
with complex topography and boundary conditions  is necessary before runout predictions 
of natural rock avalanches can be made with confidence.

Experiments like those reported by Denlinger and Iverson [3] also reveal phenomena 
that provoke new kinds of questions and motivate further model refinements.  For example, 
experiments show that grain-size segregation can be an extremely efficient process in 
poorly sorted avalanches.  This segregation influences pore-pressure generation and 
dissipation (because fine sediments sustain high pore pressures more readily than do coarse 
aggregates,) and it therefore holds large implications for macroscopic dynamics.  Indeed, 
feedbacks between the micro-dynamics of grain-scale processes and the macro-dynamics of 
avalanche motion may be crucial in some circumstances [13].  Such complexities 
demonstrate the need for continuing efforts to refine physically based models.

3.  Statistically Based Forecasting

The complexity of rigorous, physically based modeling of rock avalanche runout indicates a 
need for simpler forecasting methods that can be readily employed in hazard assessments.  
Commonly such assessments must be performed in situations where limitations of time, 
money, or information preclude detailed modeling.  The summary below describes a 
statistical forecasting method developed by Iverson et al. [12] to delineate areas likely to be 
inundated by lahars, which are water-saturated debris flows that originate on volcanoes. 
With modification of the pertinent data sets and statistics, as summarized below, this 
method can be adapted to forecasting runout of rock and debris avalanches. 

3.1.  CONCEPTUAL FRAMEWORK 

The framework of this forecasting method rests on three observations: (1) the primary 
factor determining runout of a prospective rock avalanche is its volume, but this volume is 
unknown a priori;  (2) a secondary factor determining runout is the three-dimensional 
topography of potential runout paths, which may be known with good accuracy as a result 
of standard topographic mapping; (3) runout patterns of large avalanches appear 
geometrically similar to those of small avalanches viewed at a larger scale.  That is, runout 
patterns appear to exhibit fractal scaling. 

In accord with these observations, the forecasting methodology described here entails 
formulation and statistical testing of empirical, scale-independent runout equations that 
employ avalanche volume as the independent variable. In this methodology a range of 
avalanche volumes is postulated and used to compute runout zones that are constrained by 
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path topography. The computed runout zones reflect both the statistical uncertainty of the 
runout equations and geological uncertainty about prospective avalanche volumes. 

The possibility of valid, scale-independent runout equations has been suggested 
previously.  Many investigators have noted that runout of rock avalanches is characterized 
better by the planimetric area inundated than by Heim=s [5] famous fahrböschung or H/L 
ratio [1, 2, 6, 12, 14, 15, 16, 21].  Whereas H/L ratios decline markedly and nonlinearly 
with increasing avalanche volume (V), planimetric areas of inundation ( A1 ) scale quite 

consistently with V 2/3 , as might be expected on the basis of the dimensional equivalence of 

A1  and V 2/3 .  Thus, the power-law hypothesis 

V=A 2/3
11

where 1 is a constant, can be assessed statistically to evaluate whether it provides a useful 
runout equation that is independent of scale. 

V  = A 2/3
22

Although equation (4) may be useful for assessing runout, by itself it is insufficient for 
delineating runout zones, because it provides no information about the spatial distribution 
of A1 .  An additional equation is needed to constrain the lateral limits of inundation and 
thereby place planimetric bounds on the area defined by A1 .  On the basis of physical 
scaling arguments detailed by Iverson et al. [12], an additional power-law equation 
is postulated to relate the maximum vertical cross-sectional area of valley inundation ( A2)
to the avalanche volume.  This equation constrains the lateral limits of inundation if the 
runout path topography is known.  If initiation areas and avalanche volumes are specified, 
use of equation (5) in conjunction with equation (4) defines the extent of prospective 
avalanche runout zones.  Of course, the utility of this approach depends on the statistical 
validity of the hypotheses represented by equations (4) and (5). 

3.2.  STATISTICAL BASIS 

A complete description of the statistical rationale and methods used to test and calibrate 
runout equations (4) and (5) was provided by Iverson et al. [12], who applied these 
equations to lahar runouts.  For the rock avalanche runouts addressed here, a detailed report 
is in preparation; the results summarized below aim only to demonstrate the potential 
viability of the method. 

As an initial step in statistical testing and calibration, equations (4) and (5) are 
logarithmically transformed to the linear forms, 

V   +   = A 3
2

11 logloglog

(4)

(5)

(6a)
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The log transformation facilitates use of least-squares linear regression as a tool for testing 
and calibration, and also implies that scatter of observed values of A1 and A2 as  functions 
of V is expected to scale with the magnitude V.
 Table 1 summarizes results of statistical testing and calibration of (6a) and (6b) using 
published data for rock avalanches worldwide.  Published data on planimetric innundation 
area A1 are common, whereas published data on valley cross-sectional inundation area A2
are rare.  Therefore, different sets of avalanches were used to compile the data for testing 
(6a) and (6b), and using these disparate data sets it is not feasible to assess the possibility of 
cross-correlation between the A1 and A2 values.  Instead, the data sets for A1 and A2 are 
treated as completely independent.

The most important information in Table 1 is provided by the F statistics, which 
compare alternative linear models of log A1 and log A2 as functions of log V.  Very large 
values of the F statistic for the Aspecified zero slope@ models indicate that such models can 
be rejected with a high degree of confidence (exceeding 99.5 %, as inferred from tabulated 
values of the F distribution).  In other words, regression models that assume linear 
dependencies of log A1 and log A2 on log V are clearly superior to models that assume log 
A2 and log A1 lack dependence on log V.  In contrast, the small values of the F statistic for 
the Aspecified 2/3 slope@ models indicate that such models cannot be rejected with even a 
90% degree of confidence.  In other words, the 2/3 power laws represented by equations 
(6a) and (6b) are not clearly distinguishable from the best-fit linear regressions representing 
log A1 and log A2 as functions of log V.  On this basis the 2/3 power laws are adopted as 
acceptable models of the data. 

Calibration of the 2/3 power laws entails determining optimal values of the coefficients 
1 and 2 .  To accomplish this, best-fit values of 1 and 2  are obtained by minimizing 

the mean square error in (6a) and (6b) (as in a linear regression procedure), and then 
rounding these values to two significant digits.  In this way 23=(1.3617)= -1

1 log  and 

0.20=(-0.699)= -1
2 log are obtained, yielding the predictive equations 

V0.20 = AV23 = A 2/3
2

2/3
1

The forms of these equations are similar to those of equations used by Iverson et al. [12] 
to forecast lahar inundation, but the coefficients that multiply V 2/3 are unique to rock 
avalanches.   For rock avalanches, the planimetric runout coefficient 23 replaces the lahar 
coefficient 200, and the cross-sectional inundation coefficient 0.20 replaces the lahar 
coefficient 0.05.  Thus, on the basis of these coefficients, rock avalanches can be expected 
to inundate planimetrtic areas about nine times smaller than those inundated by lahars of 
similar volume and can be expected to inundate valley cross-sectional areas about four 
times larger than those inundated by lahars of similar volume.  These contrasts reflect the 
fact that rock avalanches generally undergo less liquefaction and exhibit more flow 
resistance than lahars. 

V+=A 3
2

22 logloglog (6b)

(7a,b)
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runout data  for  rock  avalanches. 
______________________________________________________________________

                                      Models for prediction of planimetric inundation area, A1

Parameter Best-fit regression Specified 2/3 slope Specified zero slope
slope of line                   0.7207 0.6667 0.0000
intercept of line at log V =0                  0.9296 1.3617 6.8146
number of data pairs                       136 136 136
degrees of freedom                       134 135 135
sum of squares                30.5634 31.1179 127.4689
mean square                  0.2281 0.2305 0.9442
standard error                  0.4776 0.4801 0.9717
r2 statistic                  0.7602 0.7559 0.0000
F statistic       not applicable 2.4311 424.87

Models for prediction of cross-sectional inundation area, A2

Parameter Best-fit regression Specified 2/3 slope Specified zero slope
slope of line                   0.6304 0.6667 0.0000
intercept of line at log V =0                  -0.3971 -0.699 4.7077
number of data pairs                          12 12 12
degrees of freedom                          10 11 11
sum of squares                   1.9930 2.0182 9.3434
mean sqaure                   0.1993 0.1835 0.8494
standard error                   0.4464 0.4283 0.9216
r2 statistic                    0.7867 0.7840 0.0000
F statistic        not applicable 0.1262 36.88
______________________________________________________________________

The uncertainty of the runout forecasts obtained from equations (7a) and (7b) can be 
estimated from the associated standard errors, which fall between 0.4 and 0.5 (Table 1).  
Because these values apply to log-transformed data, they imply standard errors of about 
100.4 to 100.5 (  3) for constraining either A1 or A2 as a function of V.  At first glance the 
three-fold standard error associated with (7a) and (7b) might seem unacceptably large for 
runout forecasting, but the error appears less severe if uncertainty associated with 
postulating prospective avalanche volumes V is considered concurrently.  In most hazard 
assessments, only broad bounds can be placed on V, and a population of possible avalanche 
volumes must be postulated to provide a useful forecast.  Thus, the standard error 
associated with using (7a) and (7b) to forecast inundation by an avalanche with a particular 
V must be gaged relative to the uncertainty about V itself.  Viewed in this context, a 
threefold standard error associated with (7a) and (7b) appears tolerable.  Of course, any 
hazard assessment that employs (7a) and (7b) superposes the uncertainty of the equations 
and the uncertainty in postulated ranges of V to produce a runout forecast that is 
probabilistic, not deterministic.

3.3. EXAMPLE OF APPLICATION 

The implications of the uncertainties associated with (7a) and (7b) are illustrated by 
example in Figure 2, which depicts a map that forecasts rock avalanche runout patterns on  

Table 1.  Parameters  and  analysis-of-variance  statistics  for  alternative  linear  models  of  log-transformed  
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Figure 2.  Shaded relief map of the western flank of Mt. Rainier, Washington, USA, with runout hazard zones for 
rock avalanches originating in the Sunset Amphitheater.  Nested hazard zones were computed for avalanches with 
hypothetical volumes of 0.1 km3 (light tone), 0.316 km 3 (intermediate tone), and 1 km3 (dark tone) that might 
descend one or more of three valleys.

the western flank of Mount Rainier, Washington, USA.  The algorithm used to compute 
these avalanche inundation patterns is the same as that described by Iverson et al. [12] and 
Schilling [20] for computing lahar inundation patterns; only the coefficients in (7a) and (7b) 
are novel.  The spiny appearance of the hazard zones depicted in Figure 2 is a consequence 
of the relatively coarse resolution (62.5 m) of the digital elevation model (DEM) used to 
represent Mount Rainier=s topography.  Spines tend to disappear if DEMs with finer 
resolution are employed (S.P. Schilling, personal communication, 2002). 

To generate the hazard zones depicted in Figure 2, a prospective avalanche source area 
in and around the steeply sloping Sunset Amphitheater at about 4000 m elevation on the 
western flank of Mount Rainier was chosen.  On the basis of its geometry, lithology, and 
geological history, the Sunset Amphitheater has been identified as an area particularly 
susceptible to slope failure [17]. To compute the three nested hazard zones in Figure 2, 
three values of V were postulated: 0.1 km3, 0.316 km3, and 1 km3, corresponding to log V = 
-1, -0.5, and 0, respectively.  This ten-fold range in V results in a 4.64-fold variation in the 
predicted inundation areas A1 and A2 (because 102/3  4.64). This variation is about 50% 
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larger than the three-fold variation of inundation areas expected on the basis of the standard  
errors of equations (7a) and (7b). Thus, the inner hazard zone in Figure 2 would almost 
certainly be inundated by an avalanche with V ~ 0.3 km3, and an avalanche of this volume 
would be very unlikely to inundate an area larger than that of the outer hazard zone in 
Figure 2.  A similar rationale can be extended to smaller and larger avalanches by 
computing additional inundation areas (for additional postulated V) and depicting them on a 
map like Figure 2.  Iverson et al. [12] provide a more thorough discussion and detailed 
example of this methodology, albeit in the context of lahars rather than rock avalanches. 

The hazard zones of Figure 2 illustrate both advantages and limitations of the statistical 
forecasting method.  Depiction of nested hazard zones with specified ranges of uncertainty 
is a clear advantage in hazard assessments.  On the other hand, the depicted hazard zones 
take no account of dynamic effects (such as runup and superelevation) that occur as 
avalanches interact with topography, and they provide no information on avalanche speeds 
and impact forces. 

4.  Conclusion 

Forecasting runout of rock and debris avalanches is a longstanding problem with both 
scientific and practical importance.  Scientific questions about the mechanics of the runout 
process can be best addressed with a physically based runout model that rigorously 
conserves momentum and avoids used of adjustable coefficients.  On the other hand, 
practical questions about the likelihood of down-valley inundation can be addressed most 
expediently with a statistical model developed specifically for hazard assessment.  The two 
methods can be synergistic, however.  Elementary physical reasoning leads to scaling 
relationships that provide some constraints on statistical forecasting by guiding formulation 
of pertinent empirical equations, and statistically verified empiricisms summarize data 
trends that can be targets for prediction by rigorous, physically based models. Continued 
progress in scientific understanding and hazard assessment will likely entail melding of 
information obtained from physically based and statistically based investigations. 
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